Empirical Bernstein Inequalities for U-Statistics
نویسندگان
چکیده
We present original empirical Bernstein inequalities for U-statistics with bounded symmetric kernels q. They are expressed with respect to empirical estimates of either the variance of q or the conditional variance that appears in the Bernsteintype inequality for U-statistics derived by Arcones [2]. Our result subsumes other existing empirical Bernstein inequalities, as it reduces to them when U-statistics of order 1 are considered. In addition, it is based on a rather direct argument using two applications of the same (non-empirical) Bernstein inequality for U-statistics. We discuss potential applications of our new inequalities, especially in the realm of learning ranking/scoring functions. In the process, we exhibit an efficient procedure to compute the variance estimates for the special case of bipartite ranking that rests on a sorting argument. We also argue that our results may provide test set bounds and particularly interesting empirical racing algorithms for the problem of online learning of scoring functions.
منابع مشابه
Moment Inequalities for Supremum of Empirical Processes of U-Statistic Structure and Application to Density Estimation
We derive moment inequalities for the supremum of empirical processes of U-Statistic structure and give application to kernel type density estimation and estimation of the distribution function for functions of observations.
متن کاملExponential and Moment Inequalities for U-statistics
A Bernstein-type exponential inequality for (generalized) canonical U -statistics of order 2 is obtained and the Rosenthal and Hoffmann-Jørgensen inequalities for sums of independent random variables are extended to (generalized) U -statistics of any order whose kernels are either nonnegative or canonical.
متن کاملOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملModerate Deviations for Functional U-processes
The moderate deviations principle is shown for the partial sums processes built on U-empirical measures of Polish space valued random variables and on U-statistics of real valued kernel functions. It is proved that in the non-degenerate case the conditions for the time xed principles suuce for the moderate deviations principle to carry over to the corresponding partial sums processes. Given a u...
متن کاملFaster Hoeffding Racing: Bernstein Races via Jackknife Estimates
Hoeffding racing algorithms are used to achieve computational speedups in settings where the goal is to select a “best” option among a set of alternatives, but the amount of data is so massive that scoring all candidates using every data point is too costly. The key is to construct confidence intervals for scores of candidates that are used to eliminate options sequentially as more samples are ...
متن کامل